A multigrid method for constrained optimal control problems

نویسندگان

  • Martin Engel
  • Michael Griebel
چکیده

We consider the fast and efficient numerical solution of linear-quadratic optimal control problems with additional constraints on the control. Discretization of the first-order conditions leads to an indefinite linear system of saddle point type with additional complementarity conditions due to the control constraints. The complementarity conditions are treated by a primal-dual activeset strategy that serves as outer iteration. At each iteration step, a KKT system has to be solved. Here, we develop a multigrid method for its fast solution. To this end, we use a smoother which is based on an inexact constraint preconditioner. We present numerical results which show that the proposed multigrid method possesses convergence rates of the same order as for the underlying (elliptic) PDE problem. Furthermore, when combined with a nested iteration, the solver is of optimal complexity and achieves the solution of the optimization problem at only a small multiple of the cost for the PDE solution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Patch Smoothers for Saddle Point Problems with Applications to PDE-Constrained Optimization Problems

We consider a multigrid method for solving the discretized optimality system of a PDE-constrained optimization problem. In particular, we discuss the construction of an additive Schwarz-type smoother for a class of elliptic optimal control problems. A rigorous multigrid convergence analysis yields level-independent convergence rates. Numerical experiments indicate that the convergence rates are...

متن کامل

4 A Multigrid Method for the Solution of Linear-Quadratic Optimal Control Problems

The main part of this chapter is devoted to the development and presentation of a coupled multigrid method for the solution of saddle point systems (2.51) arising from the discretization of PDE constrained optimization problems. In subsequent chapters, the devised method will be adapted to handle inequality constraints on the control, and it will be employed for the solution of the systems, whi...

متن کامل

A comparison of smoothers for state- constrained optimal control problems

O ptimal control problems governed by partial differential equations with state constraints are considered. The state constraints are treated by two types of regularization techniques, namely the Lavrentiev type and the Moreau-Yosida type regularization. For the realization of the numerical solution, a multigrid method is applied to the regularized problems. The main purpose of this research is...

متن کامل

5 A Primal-Dual Active-Set Multigrid Method for Control-Constrained Optimal Control Problems

In this chapter we consider optimal control problems with additional inequality constraints imposed on the control unknown u and for their efficient solution we combine a primal-dual active-set strategy with the multigrid method developed in the previous chapter. Control-constraints are specified by the condition u ∈ Uad, where the set of admissible controls Uad ⊂ L(Ω) is a proper subset of L(Ω...

متن کامل

A Multigrid Scheme for Elliptic Constrained Optimal Control Problems

A multigrid scheme for the solution of constrained optimal control problems discretized by finite differences is presented. This scheme is based on a new relaxation procedure that satisfies the given constraints pointwise on the computational grid. In applications, the cases of distributed and boundary control problems with box constraints are considered. The efficient and robust computational ...

متن کامل

Multigrid solution of a distributed optimal control problem constrained by the Stokes equations

In this work we construct multigrid preconditioners to accelerate the solution process of a linear-quadratic optimal control problem constrained by the Stokes system. The first order optimality conditions of the control problem form a linear system (the KKT system) connecting the state, adjoint, and control variables. Our approach is to eliminate the state and adjoint variables by essentially s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Computational Applied Mathematics

دوره 235  شماره 

صفحات  -

تاریخ انتشار 2011